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Plane turbulent mixing between two streams of different gases (especially 
nitrogen and helium) was studied in a novel apparatus. Spark shadow pictures 
showed that, for all ratios of densities in the two streams, the mixing layer is 
dominated by large coherent structures. High-speed movies showed that these 
convect at nearly constant speed, and increase their size and spacing discon- 
tinuously by amalgamation with neighbouring ones. The pictures and measure- 
ments of density fluctuations suggest that turbulent mixing and entrainment is 
a process of entanglement on the scale of the large structures; some statistical 
properties of the latter are used to obtain an estimate of entrainment rates. 
Large changes of the density ratio across the mixing layer were found to have 
a relatively small effect on the spreading angle; it is concluded that the strong 
effects, which are observed when one stream is supersonic, are due to com- 
pressibility effects, not density effects, as has been generally supposed. 

1. Introduction 
Several years ago we undertook to build an experimental facility in which to 

study plane turbulent mixing layers between gases of different molecular 
weights. By that time there was a great deal of data in the literature from many 
experiments on the mixing of dissimilar gases in coaxial flows, and almost equally 
many proposals for taking into account the effects of the dissimilarities on 
turbulent mixing. The difficulty in achieving any satisfactory description of the 
effects was due, it now seems quite clear, to the limitations of the axially sym- 
metric configuration. As the jet entrains the surrounding fluid it is rapidly diluted 
and, by the time it has achieved a similarity state far downstream, is practically 
at  the same density as the surrounding fluid. At that point the only problem 
connected with the non-uniformity concerns the spreading of a passive con- 
taminant by the otherwise uniform, turbulent flow; this problem has, in fact, 
been fruitfully studied in the past. On the other hand, to study the dynamic 
effects of density non-uniformity on turbulent structure it is essential to maintain 
a large density difference and, to do it in a scientifically simple context, it  is 
desirable to find a flow which will have similarity properties under these condi- 
tions. Such a flow is the plane mixing layer. 
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It has been found in the past that the plane mixing layer seems to be fairly 
well approximated by the initial mixing region a t  the boundary of an axisym- 
metric jet, therefore the latter might be a suitable configuration for a study of the 
problem at hand. It has the advantage of being free of ‘end effect ’ problems and 
of being fairly simple to realize experimentally. On the other hand, because of the 
finite thickness of the mixing layer, it  cannot be strictly self-similar in this con- 
figuration. Although it has been adopted by some investigators (see e.g. 
Abramovich et al. 1969), we came to the conclusion that the plane-flow con- 
figuration allows more flexibility in choice of parameters, especially a second 
velocity, and has advantages for flow visualization and other purposes which 
outweigh its disadvantages, and came to design and build the apparatus described 
in what follows. 

Another motivation for studying the plane mixing layer between gases of 
different densities came from the problem of a supersonic turbulent mixing layer. 
It was known that increasing the Mach number of a supersonic jet results in a 
decrease in the spreading angle of the mixing region at  the boundary of the initial 
portion of the jet. In  most such experiments, increasing Mach number is accom- 
panied by decreasing temperature and thus increasing density of the jet, and the 
observed effects were attributed by many investigators to this increasing density 
ratio between the jet and the external gas. One result of this point of view was 
attempts to relate the supersonic mixing layer to its low-speed, uniform-fluid 
counterpart through transformations of the Howarth-Dorodnitsyn type that had 
been developed for laminar shear layer theory. Implicit in this idea is the conse- 
quence that a supersonic mixing layer would have the same growth rate as a 
low-speed layer with the same density ratio across it, and this in fact seems to be 
the assumption made. We thought, therefore, that our experiments using different 
gases could help throw some light on this aspect of the problem. With helium 
and nitrogen for example, it  would be possible to have the same density ratio 
across the mixing layer as in a supersonic air jet a t  M = 5.5. If the density ratio 
played the same role as in the supersonic case, a very marked thinning of the 
mixing layer should be observed. 

Using dissimilar gases in these experiments, it  was reasoned, would not only 
give some information on questions about the effects of density difference out- 
lined above, but would also provide dissimilarities in index of refraction and other 
physical properties that could be used to advantage in various optical and 
sampling techniques to obtain information about the turbulent structure, details 
of the mixing, etc. To enhance the sensitivity of such techniques, it was decided 
to operate a t  elevated pressures, up to 10 atm. A further compelling reason for 
the high pressure was one of economy: for given Reynolds number the mass flow 
rates of the gases scale linearly with pressure but as the square of a linear dimen- 
sion; thus it is more economical to obtain large values of Reynolds number by 
increasing pressure (or velocity) rather than size. 

The possibility of obtaining density differences by heating one of the streams 
(and possibly cooling the other) was considered but not adopted, because it 
appeared to be easier to design a system for density ratios of the order of 10 by 
using different gases. 
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While the original motivation for these experiments came from questions as 
to density effects on turbulent mixing, our attention was soon turned to even 
more fundamental questions about the flow structure, of which various facets 
were revealed in the shadowgraphs and in the density fluctuation measurements 
obtained. Thus, two themes run through this paper: one concerning the effects 
of density difference on the mean flow, the other concerning the turbulent flow 
structure. 

2. The plane turbulent mixing layer 
Figure 1 illustrates the basic elements of the family of flows which we wish to 

establish in our experiments. Two plane flows with velocity Ul and U2 and 
densities p1 and p2, respectively, are initially separated by a partition which ends 
at x = 0, where the flows begin to mix. As is well known, at sufficiently high 
Reynolds number based on x the mean flow becomes independent of molecular 
diffusion rates and approaches similarity in the variable ylx. The profiles of the x 
component of velocity and of the density have the similarity forms 

UlUl = m r ;  r ,  81, PIP1 = f 4 r ;  r, a), (2 . la ,  b )  

where r = Y / ( X - X o ) ,  r = U2lU1, s = P2IP1. ( 2 . 2  a-c) 

A shift of origin to xo is introduced in ( 2 . 2 )  to correct for the effect of finite 
thickness, non-similarity, etc. of the initial part of the mixing layer near x = 0. 
Because of these initial effects, the flow strictly speaking approaches asymptoti- 
cally to the similarity state only a t  values of x so large that xo/x -+ 0. Practically, 
it  is usually necessary to determine and include x,, as described below. 

The ratios U2/U, and p2/p1 appear in (2.1) as parameters on which the mixing 
layer structure and its various statistical mean properties depend. The effect of 
U,/Ul in homogeneous flow (s = 1) has been fairly extensively investigated in the 
past and we shall review these results in $ 5.  To determine the effect of p2/p1 was 
the initial objective of the present work. Two more parameters, namely the Mach 
numbers Ml and M2, could be added to the functional dependence in (2.1). In  our 
experiments these are both zero, and so are not explicitly exhibited. But, as 
explained in $ 1, another purpose of our work was to compare mixing rates at  
M = 0 with those where a t  least one of the streams is supersonic (MI > 0); this is 
done in $7 .1 .  
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Each mixing layer in the family of flows described by (2.1) will spread linearly, 

(2.3) 
i.e. 

where 6(x) is some measure of the local scale of the flow, a thickness defined in 
some particular way. The proportionality factor C depends on the parameters 

a s p x  = S’ = 6/(x-x,) = c, 

U2lUI and P2IP1: 
c = C(r,s) .  (2.4) 

Equation (3.4) states a functional dependence of spreading rate on velocity ratio 
and density ratio; the objective is to determine this experimentally. It is this 
clear statement that attracted us to the study of the plane mixing layer as the 
best if not the only prospect for beginning to untangle the confusion about the 
effects of density on turbulent mixing. 

Equations (2.3) show how xo is usually determined operationally. If an 
asymptotic value of 6’ = C can be determined from the experiment then xo is 
determined from the tangent, 6 = C(x  - xo). For consistency, different thick- 
nesses (e.g. momentum thickness, energy thickness, vorticity thickness) should 
lead to the same value of xo. Furthermore, the attainment of constancy in 6’ 
should be accompanied by the attainment of constancy in various turbulent 
correlations such as the dimensionless profile of Reynolds stress. This is the more 
sensitive indication of the attainment of similarity or self-preservation (Townsend 
1956). 

While there are many quantities that are of interest, such as entrainment rate, 
dissipation rate, or maximum shear stress, some measure of the spreading rate 
is indispensible for discussion and comparison of mixing layers. A frequently 
used measure is the parameter (r, determined by plotting the velocity profiles 
onto a standard curvef(C) with [ = (ry/x and choosing (T for best overall fit. Thus 
(r is actually an inverse measure of the spreading rate. Its superiority over other 
definitions is that all parts of the profile are involved in the fitting. Shortcomings 
are that the definition of thickness is tied to a shape function or a computational 
model, that low-speed parts of the profile may not be accurate, that velocity 
profiles vary in shape (and that the fitting procedure is tedious). Simpler measures 
based on the definition of some 6 have therefore been used by various authors. 
A useful discussion and compilation of values of (r from the literature is given 
by Birch & Eggers (1972). Whatever definition is used for the thickness of the 
velocity profile, it will not necessarily be adequate for the density profile. 

Here we use mainly the velocity-profile maximum-slope thickness 

UI - u2 6, = 
(8 U/ay)max ’ 

and its x derivative 

as a measure of spreading rate, but other measures are introduced where appro- 
priate. This thickness was used by Spencer & Jones (1971), who note that i t  may 
be related to (r by 

(rs: = 7rrg 
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when the profile shape is fitted by an error function. We choose for this thickness 
the notation S,, because it can also be interpreted as the vorticity th,ickness, i.e. 

where --w = aU/ay. In addition to being convenient, the vorticity thickness is 
appropriate, the problem of the growth of the turbulent mixing layer being 
basically the kinematic problem of the unstable motion induced by the vorticity. 

In  appraising the possible combinations in the r ,  s plane (2.4), various parti- 
cularly interesting ones can be found, We have been particularly interested in the 
two cases TS = 1 and rs2 = I .  For the first one, pz U2 = p1 U,, the mass flux rate is 
the same in both streams. If an eddy-viscosity model is used to solve the Reynolds 
and turbulent diffusion equation and the turbulent Schmidt number is assumed 
to be unity, it  is found that p U  = const. = p1 Ul = p 2  U, across the layer, for any 
dependence of the eddy viscosity on ylx. The deviation of a measured p U profile 
from this constant value will be related to the relative magnitudes of the 
momentum and mass diffusivities. Thus we were very interested in measuring the 
actual profile of pU for this case. For the second case, p 2  U i  = p1 U;, the dynamic 
pressure is the same in both streams. It is a special case of a set of similarity flows 
with streamwise pressure gradients. These have been studied by Rebollo (1973), 
and will be discussed in a later paper. 

3. Apparatus and measuring techniques 
The principal requirements for designing the apparatus were two: (i) high 

density ratio between the two streams; (ii) high Reynolds number. A value of 
at least 2 for the density ratio p2/p1  was required so that dynamic effects of density 
non-uniformity could be studied; even higher values, comparable to those in 
supersonic flow a t  high Mach number, were desired. For Reynolds numbers, the 
aim was to reach values comparable to those in the experiment of Liepmann & 
Laufer (1947), in which values of Uxlv up to lo6 were achieved. 

The possibility of achieving a large density ratio by heating one stream (and/or 
cooling the other) was considered but, at high flow rates, this is rather impractical. 
We therefore decided to provide density differences by using different gases, in 
particular the combination of nitrogen and helium, which gives a density ratio of 7. 
No other combination is less expensive for a density ratio of at  least two. The 
consumption of gases is kept down to economical values by operating for short 
%ow times at  high pressure. These considerations led to a new kind of high- 
pressure, short-running-time wind tunnel designed particularly for the mixing 
layer experiment. Details of its design and construction will be presented else- 
where. Basically, two gas streams supplied from two banks of 2OOOpsi bottles 
are brought together at  the exit of two 4 x 1 in. nozzles in the working section 
shown in figure 2 (plate I ) .  Upstream of the nozzle in each stream there is a 
pressure regulator, a flow metering valve, and noise- and turbulence-reducing 
sections. Downstream of the test section both streams flow through a pressure- 



780 G .  L. Brown and A .  Roshko 

balancing valve which allows the pressure to be preset and maintained a t  the 
desired operating value. 

The working section is enclosed by a cylinder (visible in the upper part of 
figure 2, plate 1) which slides down over and seals against the circular end plates 
at the top and bottom of the working section, and the whole tank can then be 
pressurized up to pressures of 10 atm. In  the resulting facility steady flow can be 
established in less than 300 ms with velocities up to 50 ft s-l and a free-stream 
turbulence level of between 0.1 and 0.5 yo. Experiments with a flow duration of 
only I or 2 s are possible. Operating at 10 atm the Reynolds number is the same 
as in a wind tunnel with 40 x loin. nozzles operating a t  1 atm and the same 
velocities. Based on x = 4in., which is less than halfway along the length of the 
uniform flow section, the corresponding Reynolds number in nitrogen is lo6 and 
about Q as large in helium at the same velocity. Our experiments were carried 
out usually a t  somewhat lower velocities and pressures (with values of Uxlv in 
nitrogen up to about 0.5 x lo6). 

Adjustable side walls that span the test section are used to adjust or remove 
pressure gradients in the flow. Preliminary adjustments for minimum pressure 
gradient are made using two solid walls and then one wall is replaced by a 10 yo 
open slotted wall. This has proved very satisfactory. 

At the conditions described above, the momentum thickness of the boundary 
layer leaving the splitter plate, estimated by Thwaites’s method, is 0-001 in. 
(the thickness of the trailing edge of the splitter plate is 0.002 in.). Various criteria 
have been advanced by different authors as to the distance downstream, in terms 
of the initial momentum thickness O,, needed to reach full similarity or self- 
preservation in the mixing layer profile. Probably the most severe of these is the 
suggestion by Bradshaw (1966) that a distance as much as 1000Oi may be needed 
for the flow to attain self preservation. We are inclined to agree with this as- 
sessment; some measurements by Rebollo (1973) in this apparatus showed 
that the profiles of density fluctuations became self-similar at distances between 1 
and 2 in. downstream of the splitter plate. 

To make measurements in a turbulent flow of variable composition with high 
turbulence levels and frequencies and a flow duration time of only a few seconds is 
difficult. As a minimum, mean density and velocity profiles are required to 
establish the essential features of the mixing region. The instruments used to 
obtain these were a fast electronic (Barocel) manometer connected to a Pitot tube, 
to measure dynamic pressure, and a small, fast-response, density probe developed 
especially for this study and described in detail by Brown & Rebollo (1972). 

In  order to obtain a complete density and velocity profile in one run, a travers- 
ing gear was designed to move the probes in steps of 0.001 in. at  the command 
of an input voltage pulse train. The device, which is visible in figure 2 (plate I) ,  
traverses the probes a t  any rate up to I in. s-1 (I000 pulses 5-1). A simple 
digital coupler synchronizes this traversing mechanism with a fast analog 
channel selector, an A/D converter and a digital incremental tape recorder. The 
resulting system steps the probe 0*001in., samples the voltage output of the 
density probe, forms the digital conversion and writes the number on tape, 
switches to the Pitot-static tube, forms the conversion and writes this number on 



Density effects and large structure in turbulent mixing layers 781 

tape, steps the probe another 0.001 in., etc. A complete traverse of 1-5 in. with a 
measurement every 0.001 in. of density and Pitot pressure is made in a typical 
run time of 3 s. The tape is processed on a computer. 

The front and back walls of the test section are 0.5 in. glass plates, the whole 
assembly being enclosed inside the pressure vessel, which has windows designed 
to withstand safely 10 atm of pressure. These features were built into the facility 
to permit the use of optical techniques. To make a shadowgraph, sheet film held 
directly against the glass wall of the test section is illuminated by a collimated 
beam of light entering through one of the pressure windows from a spark source 
of a few microseconds duration. 

4. Flow pictures 
Some of the first results obtained from this facility were instantaneous shadow- 

graphs of the flow which we, at  first, found astonishing. A few examples are shown 
in figure 3 (plate 2). These are pictures of the same flow taken a t  different times. 
The trailing edge of the partition between the two nozzles (the splitter plate) is 
just visible a t  the left of each picture; the upper part of the flow is helium, the 
lower part is nitrogen, at  velocities of 500 cm s-l and 190 cm s-l respectively, 
corresponding to the condition p1 UZ, = p2 U;, i.e. Ul/U2 = 4 7 .  The pressure is 4 atm. 

That the structure visible in these pictures is not unique to the case with large 
density difference is shown by figure 4 (plate 3), which is a picture of the mixing 
layer between streams of nitrogen (upper ) and air (lower) with the same velocity 
ratio, Ul/U2 = 47 ,  as in the preceding case, and at nearly the same Reynolds 
number. The dissimilarity in the gases provides the refractive index difference 
needed to obtain a shadowgraph, but the densities are close enough (28: 29) that 
the flow is for all practical purposes at uniform density. 

To illustrate the effect of a large change of density ratio, the pictures in 
figure 5 (plate 4) were taken of a flow with Ul/U2 = J7 again, but p1/p2 = 7 
(nitrogen in the upper part of the picture, helium in the lower), so that 

p1 uz, = 49p2 u;. 
This flow and that in figure 3 are a t  the same velocity ratio but differ in density 
ratio by a factor of 49. The effect of this large increase of p2/p1 is to decrease the 
spreading angle by a modest factor of about 2. The picture in figure 5(a) is an 
instantaneous shadowgraph while that in figure 5 ( b )  is a superposition of 10 
shadow graphs, obtained by simply exposing the film 10 times at  random. The 
latter gives an impression of the linear spreading of the average flow. 

The flows in the preceding figures were all a t  the velocity ratio Ul/U2 = 47 .  
Increasing this to Ul/U2 = 7 produced the results shown in figures 6 (a)-(c) (plate 5 )  
for p1/p2 = 3, I and 7, respectively. The spreading rates are higher than for the 
corresponding cases a t  Ul/U, = 4 7 .  The walls, visible in these pictures, were 
positioned to accommodate the displacement thickness of the wall boundary 
layers and of the mixing layer, and to keep the mixing layer approximately 
parallel to the splitter plate. The positions were determined by trial and error 
using pressure distribution along the channel as a guide. 
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FIGURE 7.  Visual growth rates. 
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Estimates of the spreading angles of the mixing layers in these instantaneous 
pictures were obtained by drawing straight-line mean tangents to the ‘edges’ of 
the mixing layer, as illustrated on one of the pictures in figure 3 (plate 2). The 
vertex of each pair of tangents is placed a t  the virtual origin xo, determined from 
the profile measurements discussed in 9 5 and 5 6. The wedge formed by these 
tangents defines a ‘visual’thickness &,iZ and its growth rate 6&, = 6viz/(x-xo). 
The latter are plotted in figure 7 against the parameter (U, - U,)/( U, + UJ,  which 
is discussed in $ 5 .  Some of the points are the result of several measurements, the 
variation of which suggests uncertainty of & 10 %. (The points labelled 8; are 
obtained from density profiles; they are discussed in 9 6.)  Assuming that (see 5 5 )  

u - u, 
= c o n s t . 1  ul+ U2’ 

we have drawn the straight lines with values of the constant of 0.51, 0-38 and 
0.28 for p2/p1 = 7, 1 and 3, respectively. 

While this measure of the spreading angle is somewhat subjective and has not 
been determined as accurately as other spreading-rate parameters to be pre- 
sented later, it  is in some ways more useful for defining the extent of the region 
involved in the mixing. Figure 7 also serves well to illustrate that the effect of 
density ratio (varying from 7 to 3) on the spreading angle is not extremely large. 

The coherent structure visible in the shadowgraphs was for us a most un- 
expected finding. At first surprised to see such well defined structures, we 
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attempted to eliminate them, looking for possible resonances, splitter plate 
vibrations, etc., but none were found. Conversely, placing wire trips just up- 
stream of the trailing edge of the splitter plate did not disrupt the visible large 
structure a few boundary-layer thicknesses downstream. Although the idea of 
a large structure in turbulent shear flow is not new, we had not expected to find 
it so well ‘organized’ and more or less two-dimensional. The pictures themselves 
suggest that the large eddies are basically two-dimensional, and this was con- 
firmed by comparing signals from two hot-wire probes (figure 8(a) ,  plate 6) 
disposed laterally near the edge of the mixing layer to detect bulges of the large 
eddies. Similar confirmation is provided by shadowgraph views normal to the 
plane of the mixing layer such as that in figure 8 ( b )  (plate 6). The streamwise 
streaks are possibly connected with longitudinally oriented instabilities, and 
there are other patterns suggestive of ‘three-dimensional ’ instabilities of scale 
smaller than the basic large one. The spanwise lines and bands delineate spanwise- 
coherent structures which are the structures discussed above. 

5. Results for uniform density 
Because of the unconventional character of the flow apparatus and instrumen- 

tation, and in view of the pictures of the large-scale structure, which had not been 
previously reported, it seemed desirable to make some measurements in mixing 
layers in the same gas (air or nitrogen), to compare with previous results (i.e. to 
prove the apparatus). These would also provide reference data for our measure- 
ments in mixing layers between different gases. Two values of the velocity ratio, 
namely UJU, = r = 7 and 47, were chosen for particular attention, because these 
correspond to the values used in the experiments on mixing layers between 
streams of helium and nitrogen. 

The measurements were made a t  a pressure of 7atm and a velocity U, of 
1000 cm-l. Having set the pressure to be uniform, by adjusting the side walls, 
a Pitot-static tube and a hot-wire anemometer were traversed side by side (0.5 in. 
apart) across the mixing layer. Thus any effect of the Pitot probe’s slower 
response time or of other differences in the averaging of each probe would be 
apparent. I n  each case approximately eight traverses at various locations (x) 
from 0.5 to 4in. downstream of the splitter plate were made. For each run a 
traverse of 1.5 in. (or less) produced some 1500 measurements for each probe and a 
mean profile was found by fitting, in a least-squares sense, a high-order polynomial 
(16 to 20) to all 1500 points (see discussion in 9 6). Figure 9 (a) is a similarity plot 
from the resulting Pitot-tube profiles for all 10 runs a t  the velocityratio U,/U, = 3. 
The origin of x for this plot was found by fitting a straight line to a plot of the 
thicknesses determined at each traverse. For this flow the effective origin was 
at xo = - 0.25 in. (i.e. upstream of the splitter plate edge). Deviations on the low- 
speed side are larger than on the high-speed side, partly because the relative 
fluctuation level is much larger on the low-speed side, partly because the Pitot 
pressure is only 2 yo of its free-stream value, which makes for larger relative errors 
in measurement. Even less scatter was obtained for the velocity ratio of 1:  J7 
(figure 9 ( b ) ) .  
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FIGURE 10. Vorticity-thickness dependence on velocity-difference parameter for uniform 
density. Results of various investigators: A, present; , Liepmann & Laufer; 0, Miles & 
Shih;O, Mills; 1, Patel; x , Pui; 0, Reichardt (see Schlichting 1960, p. 599); +, Spencer 
& Jones; 4, Sunyach; [7, Wygnanski & Fiedler; A, Yule. 

Shown on the same figures but displaced vertically are the profiles measured 
with the hot-wire anemometer. The correspondence between the profiles 
measured by the two methods is very close. I n  the case of the hot-wire measure- 
ments, the (nonlinear) voltage-velocity calibration curve was included in the 
computer program for reducing the data. That the Pitot-tube results agree 
closely indicates that any possible nonlinear contribution due to fluctuations 
is negligible. 

The values of vorticity-thickness spreading rate S: determined from these 
profiles are 0.134 and 0.089 for r = 3 and 11 J7, respectively. They are plotted in 
figure 10, along with values determined from the data of other investigators, 
against the parameter A, introduced below. On the basis of this, we believe that 
the mixing layers developed in the flows in this apparatus are not different from 
those measured by other investigators in more conventional flow systems. Our 
measured points are well within the scatter band of the collected measurements. 

This scatter is, in fact, rather larger than would be desirable if the data were to 
be used to define the dependence of spreading rate on velocity ratio (i.e. 8: = 

G(r ;  1)). Various proposals for a function of this type have been put forward by 
various investigators. Amongst these is the relation 
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proposed by Abramovich (1963) and Sabin (1965). co is a ‘standard’ value a t  
r = 0. The corresponding relation for the vorticity-thickness spreading would be 

s:/s:, = cjc, = A. ( 5 . 2 )  

The motivation for plotting the data against A, rather than r ,  comes from this 
relation. However, there are several important points about the adoption of this 
variable, as well as the method of plotting, which need to be discussed. 

First, many authors have used ale, as the dependent variable; this tends to 
increase indefinitely as r +- 1 or h -+ 0. As pointed out by Birch & Eggers (1972), 
following a suggestion by S. J. Kline, it is more sensible to use co/c, or in our case 
S:/S:s, because then the very good point a t  the origin ( A  = 0) can be used for 
anchoring any curve through the data. The perfectly reasonable assumption is 
that  turbulent spreading rate will tend to zero for zero velocity difference between 
the two streams. Of course, in reality the initial boundary layers from the splitter 
pl te become dominant for U, = U, and the flow becomes a wake flow. For U, only 
sli 2h tly different from U,, it is necessary to be very far downstream for the wake 
component to give way to a pure mixing layer flow. It is for this reason, prob- 
ably, that the experimental data tend to show rather large scatter for h --f 0. 
The anchor point a t  the origin is very helpful for steering the curve through 
this portion of the plot. 

There is another region of large scatter, namely at U, = 0. This brings us to our 
second point about the method of plotting. To plot the data in normalized form, 
in terms of some particular value (T, or S;, a t  U2 = 0, is to put an unnecessary bias 
into the data fitting, particularly in view of the large scatter a t  U2 = 0. We have 
therefore chosen, in figure 10, to present the data without normalization, leaving 
open for the moment the question of the best curve through them. The reasons for 
the large spread here may be connected with difficulties of measuring on the low- 
speed side of a layer for which U2 = 0 (but this should not affect the determination 
of maximum slope thickness); or they may be connected with sensitivity to the 
environment on the low-speed side. (It may be noted that the case U2 = 0 is some- 
what singular, in that the entrained flow velocity has a magnitude of about 
0.035U1, and is not parallel to the velocity U,, but more nearly perpendicular to 
it.) Whatever the reasonsfor the scatter a t  U, = 0, anaccurate determination a t  this 
point is important for helping steer the curve through the region near h = 1.  In  
view of the scatter, a straight line through the origin would appear to be as good 
as any for fitting the data in figure 10 (i.e. to use the Abramovich-Sabin relation). 
The best-fit line (r.m.s. deviation = 0-015) has the equation 

u - u, 1 - r  
8: = 0 . 1 8 1 1  = 0.181- = 0.181h. u, + u2 l + T  

(5.3) 

This curve intersects U2 = 0 a t  S:, = 0.181. The mean value of all the data a t  
U2 = 0 gives a slightly smaller value, 8:o = 0.178. 

However, we tend to be prejudiced in favour of an even lower value of &Ao, one 
closer to the Liepmann & Laufer (1947) value of 0.162, recently checked very 
closely by Spencer & Jones (1971); the scale and the Reynolds number in these 
two experiments was larger than in most of the others. But if the curve is to pass 

50-2 
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through a value of about 0-16 a t  h = 1, then a straight line through the origin will 
not be a very good fit to all the data. A curve which is concave downward would 
be indicated. Some indication of this tendency is also evident in the plot of 6& in 
figure 7. Yule (1972) also argued for a curve concave downward and proposed a 
relation of the form 

To pursue this idea further, it is instructive to discuss possible modifications of 
the Abramovich-Sabin relation. Consider first a hypothetical experiment in 
which the two half-spaces of fluid separated by the plane (y = 0, z = 0) are 
impulsively set iqto motion at time t = 0 with velocities Ul and U2, respectively. 
Initially, this is &he problem of the temporal instability of a vortex sheet. The 
interface will become turbulent and, in the usual way, viscosity not being 
explicitly a parameter of the turbulent shear layer so established, the thickness of 
the latter must ultimately grow according to the law 

6 = const. (U, - U2) t. (5.4) 

Whatever the values of the velocities Ul and U,, only the velocity difference is 
significant in this temporal problem, which is invariant to a Galilean transforma- 
tion. This statement cannot be made for the spatial problem, which is the subject 
of this paper, and of any steady-flow experiment. As in stability theory, one 
might try to ‘transform ’ from the temporal to the spatial problem by a relation 

t = XI&, 

where V,  is an effective or convective velocity. For example, if we choose for this 
the average velocity U, = *( Ul + U2) then 

6 u,- u2 

X ul+ U,‘ 
- = 6’ = const.- 

This is one way to derive the Abramovich-Sabin relation. 
One might make other choices of V,, e.g. the velocity of most-amplified 

instability waves in a shear layer. Another possible choice for V,, but no more 
rigorously founded than the others, is the velocity U, on the dividing streamline 
($ = 0 ) ,  which has values equal to (for U, + 1) or greater than the average 
velocity. A fairly accurate, explicit formula for U, can be obtained by representing 
the velocity profile by a straight line, 

U(Y) = u2 + P1-  7-42] YP, 

and using the formula of Korst, Page & Childs (1955) for locating the dividing 
streamline. The result is 

Using this value of U, for CL results in 

6: = const. h( 1 + QhZ)-t. (5 .5)  
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To fit the data in figure 10, we would choose const. = 0.202. The curve is concave 
downward and passes through &Lo = 0-1 75 at h = 1. 

A more accurate representation of the velocity profile shape would alter this 
result only slightly. A more useful additional step would be to extend the calcu- 
lation to the case of different densities, s =i= 1, but for this it would be necessary to 
determine a suitable density-velocity relation p = p( U ) .  So far we have not 
attem ted this. 

eddy-viscosity model. This was the basis of Sabin’s derivation. If it  is assumed 
that the velocity profiles, for various values of U2/Ul, may be written in the form 

Yet P another result for the velocity dependence of 6‘ may be obtained from an 

and that the eddy viscosity vT is of the form 

vT = const. 8(U, - U,), 

then a similarity solution to the equations may be found in which f (yl8) depends 
(weakly) on U2/Ul. The first term of an expansion solution of the integral form 
leads to the result 8; = const. A, and inclusion of the second term results in 

6: = const. [h/( 1 + ,,hz)]. 8 

The data in figure 10 can be fitted with a constant of 0.204, thus &Lo = 0.174. 
On the basis of accuracy of fit, it is not possible to distinguish between the 

three formulae proposed above. The accuracy based on r.m.s. deviation is in all 
cases 0.015 (i.e. about 8 yo). To decide between the straight-line Abramovich- 
Sabin relation and the concave-downward curves which the other models suggest, 
it would be helpful to have a more certain value of 8; at U, = 0. The dispersion in 
the seven values at  U, = 0 that we have used, as may be seen on figure 10, is very 
large (the mean value is 0.178 with r.m.s. variation of 0.024). Until the scatter 
in the values, especially a t  U, = 0, can be narrowed, there appears to be no basis for 
preferring one formula over the others. Accordingly, in the discussion of density 
effects in 336-9, we shall use as reference curve for uniform density (s = 1) the 
simple Abramovich-Sabin relation in (5.3). That relation was also favoured by 
Birch & Eggers (1972) for their correlation of the spreading parameter a,/a; 
however, they left open the question of the constant. 

To summarize, the agreement of our results with those obtained in a variety of 
other experimental situations lends confidence that the apparatus produces 
‘normal’ free mixing layers. On the other hand, it must be admitted that the 
collected experimental data have an undesirably large scatter, so that the 
definition of the important function &:(A) is somewhat uncertain. Attempts to 
formulate models for deriving the function, as well as the experimental data, 
suggest to us that the function is not linear, but concave downward. However, 
the data are not accurate enough to allow a conclusive judgment, and it seems 
appropriate for now to use the simple straight-line fit in figure 10. How much the 
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density ratio p2/p1 influences the growth rate is the subject of $6 6-9. In  trying to 
evaluate this influence, we shall assume that SJh) for uniform density is defined 
by (5.3). 

6. Results for density difference 
Using the procedures described in $ 5 for uniform density, measurements were 

made in the mixing region between nitrogen and helium. I n  addition to the Pitot- 
static probe used for measuring dynamic pressure, the traverse carried a density 
probe which could measure the local composition of the gas (i.e. the concentra- 
tion of helium relative to the nitrogen). This probe, which is described by Brown & 
Rebollo (1972), has a response time of about 0.2 ms and samples a volume of a few 
thousandths of an inch in diameter. It is insensitive to velocity when the Mach 
number is small, as in our experiments. 

The output during a traverse of the composition probe is shown in figure 11 (u). 
I n  this computer plot the voltages put out by the probe have been converted to 
densities by means of a calibration obtained for various mixtures in a static 
system. The plotter connects the data points with straight-line segments, which 
gives the impression of a continuous signal. The plot is actually a series of discrete 
outputs, one from each sampling point as explained in 5 3. It may be seen that 
the fluctuations of density, or composition, are large, a point to which we shall 
return later. For the present, we are interested in mean values. It may be noted 
that the measured density is nowhere greater than that of nitrogen or less than 
that of helium. The small fluctuations at the nitrogen and helium levels outside 
the mixing zone are noise. To determine the mean density profile from the distri- 
bution of instantaneous values shown in figure 11 (u), the following method was 
adopted. A high-order polynomial (up to 20 terms) was fitted to the data (1500 
points) by determining the coefficients for a best mean fit in the least-squares 
sense. Experimentation with the number of terms in the polynomial suggested 
that the procedure gave accurate results and this was confirmed (Rebollo 1973) 
by comparison with time-averaged values obtained from stationary probes. Mean 
density profiles determined in this way are presented in following figures. 

Figure I1 ( b )  shows an example of the dynamic pressure recorded during a 
traverse of the Pitot-static probe where, because of the damping of the probe- 
transducer system, the recorded signal has much less fluctuation. These profiles 
were smoothed in the same way as the density profiles. 

There are two possible ways to determine the mean velocity profiles from the 
measurements of density and dynamic pressure. One is to compute the velocity 
squared a t  each step by dividing the Pitot-static tube signal by the density-probe 
signal, then smooth the resulting data, and this was done a t  first (Brown & 
Roshko 1971). The other method is to determine the mean velocity profile from 
the mean profiles of dynamic pressure and density. An analysis of the expected 
errors from cross-correlation terms (Rebollo 1973) indicates that  the latter 
method is somewhat more accurate and, without any attempt at including 
correction terms for the cross-correlations, gives mean velocities accurate to  
about 4 yo. The mean profiles of density and velocity determined in this way 
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from the data in figure 11 are shown in figure 12. Also shown is a density profile 
obtained by averaging groups of 50 adjacent points. 

Using these methods, mean density and velocity profiles were determined a t  
several values of x downstream of the splitter plate. Various characteristic 
thicknesses could be defined for each profile. A plot of any of these against X ,  

fitted by a straight line, defined the value of xo a t  the intersection of the straight 
line with the x axis. Consistent:values of xo were obtained when different definitions 
of thickness from the different profiles (density, dynamic pressure, velocity) were 
used. With xo determined, the mean density and velocity profiles were plotted 
against y/(x - xo) and the similarity profiles so determined. These similarity plots 
for three different flows are given in figure 13. The three flows are mixing layers 
between helium and nitrogen streams for which the parameters correspond to 
p1 Ul = p2 U,, p1 UZ, = p, UZ, and p1 UZ, = 49p, Ui ,  in parts (a)-(c) of the figure, 
respectively. The case p1 Ul = 49p, U, is not given because accurate measurements 
could not be obtained, the corresponding ratio of dynamic pressures across the 
layer being 343 ! 

We noted previously the effect of density difference on spreading rate as 
determined visually from pictures. The results are given in figure 7 .  Plotted on 
the same figure are points labelled 8;) which are determined from the mean density 
profiles, taking SP as the thickness between the edges (within 1 % of the free- 
stream values). It may be seen that the spreading of the density profile coincides 
fairly well with the extent of mixing visible on the shadowgraphs. 

A similar plot for the vorticity thicknesses, determined from the velocity 
profiles, is given in figure 14. The two data points for p2/p1 = 7 and one point for 
p2/p1 = 3 are too few to warrant any inferences about the shape of the curves for 
those values of density ratio, and we have simply fitted straight lines through the 
origin. Comparing with figure 7 ,  it may be seen that the effect of density ratio on 
8: is about the same as on S& From the intersections of these lines with h = 1 
we infer the effects of density ratio a t  U, = 0, for comparison, in $ 7 ,  with super- 
sonic effects. 

7. Discussion of density effects 
The relationship between the shear layer parameters and the density ratio in a 

supersonic shear layer has been the subject of many theoretical and experimental 
investigations. Some of the popular theoretical approaches are based on the 
assumption that the main role of compressibility effects a t  high Mach number is 
to set the temperature and density profiles; and they seek e.g. a transformation to 
the case of uniform density. All transformation methods of this Howarth- 
Dorodnytsin type have implicit in them the assumption that the effect of density 
non-uniformity is universal, whether it be due to compressibility, or incompressible 
variation of composition, or incompressible non-uniformity in temperature. For 
laminar flows these transformations develop rigorously and provide useful 
methods of solution of the compressible equations but for turbulent flows, for 
which the laws governing the Reynolds stresses and other transport terms are 
not known, this method requires empirical inputs. I n  particular, it may be 
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1 1 1 1 1 1 1 1 1  

FIGURE 14. Effect of density ratio on spreading rate. 

expected that compressibility, especially a t  high Mach numbers, will have an 
important effect on the turbulent structure (apart from effects on the density 
distribution) and thus on the Reynolds stresses, etc. Such problems are the 
subject of this article. 

I n  9 7.1 we compare the results of our measurements of turbulent spreading 
rates a t  low Mach number with results of other investigators a t  supersonic speeds. 
It appears that there is an essential difference between these two cases for the 
same density and velocity ratio. We then show in $9 7.2 and 7.3 that the observed 
differences may be related to the forms of the Reynolds equations for incom- 
pressible and supersonic flow. It is found that the pressure-velocity correlations 
can account for the observed difference between shear layers in supersonic and 
incompressible flow, and estimates incorporating this correlation qualitatively 
describe the dependence of spreading angle on Mach number for supersonic flow. 
I n  fact, if the correlations u12)) and p" depend only on density and velocity 
differences, and not specifically on Mach number, it is only the pressure-velocity 
correlation which can account for the observed difference. Finally, in $7.4 we 
discuss the observed difference in spreading rate of the density and velocity 
profiles in incompressible flow. This can be described by an eddy-viscosity model 
only if the Schmidt number is much less than 1 (in our case approximately 0.3). 

7 .  i. Comparison with supersonic mixing layers 

One of the initial aims of this work was to compare the effect of density on 
turbulent mixing in supersonic and subsonic flows. This comparison is made in 
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0.1 0.2 0.4 0.6 0.8 1 4 6 8 1 0  

P 1IP 2 

FIGURE 15. Effect of density ratio on spreading rate with U, = 0. 0,  values for incom- 
pressible flow (from figure 14). Other symbols are for compressiblemixinglayers: + , Maydew 
& Reed (1963); A, Ikawa (1973); x , Sirieix & Solignac (1966). 

figure 15, where the present results for growth of vorticity thickness in incom- 
pressible flow are plotted against density ratio, together with the results of other 
investigators in supersonic flow. Clearly, the thinning of the mixing layer with 
increasing density on the high-speed side is much stronger in the supersonic case. 
It must be interpreted as an effect of compressibility connected with the Mach 
number, which is marked off on the density scale. (For all the flows cited the 
density ratio p1/p2 G KITl, where T, is the adiabatic recovery temperature.) 

In  incompressible flow, a density ratio p1/p2 = 7 decreases the vorticity thick- 
ness by about 30% compared with the uniform-density case, whereas, in supersonic 
flow with the same density ratio, the vorticity thickness is decreased by a factor 
of about 300 yo (estimated by extrapolating the data to Ml = 5-7) compared with 
the incompressible, uniform-density case. 

7.2. Governing equations 

For both supersonic and incompressible, variable-density, plane turbulent 
mixing layers the same continuity and momentum equations apply: 

a a 
- ( p U ) + - ( p n j v )  = 0, 
ax aY 

a a a -  
-(pU2)+-(pUV+ U p " )  = --(pu'w'), 
ax aY aY 

a - ap - (pv'2) = - - . 
aY aY 
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(The usual approximations, that gradients in the x direction are small compared 
with gradients in the y direction, and that r.m.s. values of the fluctuations u' and 
v' are comparable, have been made. It is understood that all the variables are 
time means.) If the correlations and u- depend only on density and velocity 
(and not specifically on temperature or Mach number) then the experimental 
difference between the supersonic and incompressible variable-density shear 
layer must arise from differences in the other equation to be satisfied, namely 
the energy equation in variable-temperature flows, and the diffusion equation in 
variable-composition flows. 

The diffusion equation for the i th  component of a mixture of gases is found 
from the conservation of molecules, 

ani 
-+V.n,u, = 0, 
at (7.4) 

where ni is the number of molecules of the i th component per unit volume and u, 
is the average velocity of the particles, and Fick's Law, i.e. 

n, n. 
-(u,-u) P = -g@v--", P (7.5) 

where 9 is the coefficient of diffusion, p the density, and u the velocity of the 
centre of mass of the mixture of particles (Hirschfelder, Curtiss & Bird 1954). 

These two equations combine to give the diffusion equation 

an, 
-+V.n ,u=V.  at 

In  the particular case of diffusion in uniform-temperature subsonic Aow, the 
variation of thermodynamic pressure and temperature throughout the flow is 
small (i.e. Aplp, A T / T  are of the order of M2). Summing the partial pressures at 
any point then gives p = nkT,  where n is now Cn,. Thus the variation of n 
throughout the flow is small (i.e. Anln N ill2). 

Summing equation (7.6) over all components in a low-Mach-number flow 
therefore leads to the general unsteady diffusion equation 

v.u = V.(pg@Vl/p). (7.7) 

For a turbulent flow we now write u = U + u' and the same reasons that lead one 
to postulate a large Reynolds stress relative to the viscous stress also lead to the 
omission of molecular diffusivity; (7.7) reduces to 

V . U  = 0. 

This is simply the statement that the flow is incompressible; at low Mach number, 
the volumes of fluid particles remain constant. Thus, to the extent that mole- 
cular interdiffusion is negligible, turbulent mixing may be viewed as a complex 
'entanglement' of fluid elements which maintain their volumes and identities. 

To summarize, for a steady two-dimensional turbulent flow of variable com- 
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position the equations of motion are continuity and momentum (7.1)-(7.3) and 
the diffusion equation, which reduces to 

au av -+- = 0 
ax ay 

( U  and V being time-averaged velocities of the centre of mass of the particles a t  
any point). By defining p 8 = pV +p" and eddy diffusivities gT and vT, where 

(7.1), (7.2) and (7.8) can be rewritten in the forms 

(7.9), (7.10) 

(7.11) 

(7.12) 

(7-13) 

which are identical to the two-dimensional laminar boundary-layer equations 
with V replaced by 8, and molecular diffusivities replaced by the eddy diffusivities 
vT and gT. 

Now with the supersonic shear layer in mind, but generally for any uniform- 
composition variable-temperature shear flow (in the boundary-layer sense), the 
diffusion equation (7.7) is replaced by the energy equation 

Por a perfect gas (h  = ~ / ( y -  l ) p / p ) ,  (7.14) can be rewritten as 

(7.14) 

(7.15) 

Using the continuity equation and substituting for Dp/Dt gives the general two- 
dimensional ' boundary layer ' energy equation 

For a turbulent flow P +p', U + u', etc. are substituted for p and u, etc., in this 
equation; for the steady plane shear layer the resulting mean energy equation 
reduces to 

p -+- au av +- a p'v'+- - 1 v-- aP- 0, 
[ax a,l aY Y aY 

(7.17) 

where again the Reynolds number is supposed sufficiently large for the molecular 
diffusion of heat and momentum to be negligible. In  obtaining (7.17) from (7.16) 
it has also been assumed that gradients in the y direction are large compared with 

5 1  F L M  64 
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gradients in the x direction, that  p)uI is of the same order asp-, that aPlax = 0 
and .that (y-  lf/yv'ap'lay is of the same form but smaller than i?/i?y(pT). This 
last assumption is convenient, but is by no means necessary for the argument 
that follows. 

I n  this form, it is immediately clear that, if the last two terms in this energy 
equation (7.17) are negligible, the equation becomes identical with the 'diffusion 
equation', (7.8). Then and only then would there be no distinction between the 
three shear layers having the same velocity and density ratio, but having the 
density difference across the layer due, in one case, to a difference in molecular 
weights of the gases on either side, in another case to a difference in temperature 
of these gases, or in the third case to high-speed compressibility effects. That there 
is a difference between the first and last of these cases must be due to  the 
significance of the last two terms in (7.17) if the correlations ZLT and p- depend 
only on density and velocity differences, and not specifically on Mach number. 

It will be shown in § 7.3 that the last two terms are negligible for incompressible 
turbulent mixing layers between streams a t  different temperatures, so that in 
this case (7.17) becomes 

au av 
ax ay 
-+- = 0. (7.18) 

Again by definingpv = pV+p'v', and making use of continuity (7.1), (7.18) can 
be written as 

Using p = pRT and noting that p is constant t o  order ill2 across a turbulent 
mixing layer, this equation becomes 

where it has been assumed that p'/p is sufficiently small for- to be equal to 
(p /T)  T'v'; i.e. (7.18) is equivalent to the familiar incompressible turbulent- 

where KT, the thermal eddy diffusivity, is defined by 

(7.19) 

(7.20) 

To summarize, the main results of the above analysis are the following. At low 
Mach number, turbulent mixing is incompressible, whether the mixing streams 
have the same densities or not. It is immaterial how the differences in density 
arise, whether from temperature differences or from molecular-weight differences. 
At high Mach number, however, compressibility introduces effects which do not 
occur in the low-speed flows and which introduce into the Reynolds equations 
Mach-number dependent terms involving the pressure-velocity correlation 21/0) 
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and possibly the pressure-gradient term Vaplay. This compressibility effect is 
distinct from any effects due to density differences which might arise from the 
conditions of the high-speed flow. By choosing suitable supply temperatures, it 
would be possible to produce a mixing layer between a supersonic stream and a 
quiescent ambient region (U, = 0) with densities the same in both streams 
(p, = pl).  We expect that for given Mach number MI the turbulent spreading 
angle would still be approximately the same as in figure 15, i.e. much smaller than 
for a constant-density flow a t  M 0. (In the proposed experiment, the mean 
density would probably not be constant throughout the mixing region.) 

7.3. Order-of-magnitude estimates 

Using continuity and rewriting the left-hand side of the momentum equation 
(7.2) in the usual Eulerian form leads to the usual estimate 

- 
U'V' N uUAU (7.21) 

for the order of magnitude of uIz)), where a is a measure of the spreading angle 
(AylAx) for the layer. It is also reasonable to suppose that N u'v' (where u' 
means the r.m.s. fluctuation level) and that u' N AU even in the compressible 
flow.? It follows from these estimates that 

vuI N au. (7.22) 

(If it is assumed that v' - u'( N A U )  it then follows that a N AUjU,  which in 
the notation of $5 leads to the usual constant density approximation for the effect 
on spreading angle of different velocity ratios, namely a = const. (1 - r ) / (  1 + r ) . )  

With these estimates the orders of magnitude of terms in the energy equation 
(7.17) can now be made. From (7.3) Vap/ay N V(pa2U2)/(Ay),  and likewise, ifit is 
supposed that p' is a t  least of the same order as the mean variation in static 
pressure, then p- N p'v' or pa3U3.  In  terms of these orders of magnitude, the 
energy equation is 

aAU + V + a3UM2 + Va2M2 = 0, (7.23) 

where M is the Mach number U/a  and a2 = yp/p. Clearly, for small Mach number 
the last two terms are negligible, and the 'energy' equation (7.17) becomes 
identical with the 'diffusion' equation (7.8). Thus, the shear layer between gases 
having different molecular weights will be the same as that between hot and cold 
streams of the same gas if the density and velocity ratios are the same in both 
cases. 

It is clear, however, that, for sufficiently large Mach number, a must depend 
on M for the last two terms in (7.23) to remain of the same order as the first two. 
This dependence is evidentlv 

(7.24) 

t This assumption could be thought of as implying an oscillation of the shear layer with 
an amplitude equal to some fraction of the shear layer thickess. If, indeed, this amplitude is 
decreased at high Mach number, the dependence of a on Mach number, which we find, will 
be even greater. 

51-2 
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It is interesting that this result does qualitatively describe the experimental 
results which are available (figure 15). A rough fit to the high-M portion of the 
curve might be 8; = O-2/Ml. 

According to this estimate, a t  high Mach number vf decreases; i.e. 

a result we are not able a t  present to compare with measurement. It should be 
noted, however, that, while v f  decreases with M ,  so too does a, so that the 
turbulent terms that have been neglected in deriving the equations are still 
negligible. 

It is interesting to note that, because of this required dependence of a on M at 
high Mach number, also depends on M ;  i.e. 

- 
U'V' N M-l( UAU)& AU.  

This suggests the possibility that at high Mach number the form of the eddy 
viscosity vT defined by u'v' = - vT aU/ay should be 

VT N S(X) (UAU)&M-l, 

and not that for incompressible flow, for which a N A U / U  and u- N AU2 give 
correspondingly the familiar vT N S(x) AU,  where S(x) is the local shear layer 
thickness. 

7.4. The diffusivity of mass and momentum 

In  all cases of shear layers between helium and nitrogen, we find that the 
spreading angle of the density profile is greater than that for the velocity. This is 
particularly marked for the case plUl = p2U2 (figure 13(a)), in which the 
maximum-slope thickness for the density profile is almost twice that of the 
velocity profile. This is important, as it implies significantly different diffusion 
rates for mass and momentum, a result which must be taken into account in any 
theoretical model constructed to calculate variable-density turbulent flows. In  
fact, a common assumption in many existing calculation procedures is that the 
diffusivities vT and gT are equal (i.e. that the Schmidt number Sc = vT/BT = 1, 
or at least not much different from unity). 

In  trying to clarify this situation experimentally, it occurred to us that the 
density and velocity ratios corresponding to plU, = p2U2 is an especially 
illuminating case to study, for the following reason. If vT = gT,  the solution of 
the diffusion and momentum equations 

is easily shown (by substitution) to be pU = const. all across the layer. It should 
be noted that this is the solution for any profile function for the diffusivities, so 
long as the function is the same for both of them. The result implies that all 
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FIGURE 16. Profiles of pU/plU,. ---- , experimental profile, corresponding to data in 
figure 13 (u); -, profiles from simple eddy-viscosity theory, with Sc = 0.2,0.4,0~6,0.8.1.0 
and 1.2, lowest value corresponding to lowest curve. 

streamlines would be parallel, not that  there would be no mixing. From the 
continuity equation, pP = 0 and consequently pV = ~12)). The ratio pU/pl Ul is 
easily determined from the measurements; its deviation from const. = 1 is a 
sensitive measure of the extent to which Sc + 1. Figure 16 shows the experi- 
mental values of ( p U ) / p l  U,) across the layer for the case p2 U2 = p1 Ul under the 
conditions of figure 13 (a) .  The minimum and maximum values of 0.6 and 1.3 on 
the low- and high-velocity sides, respectively, indicate that Sc < 1. Imagine a 
discontinuous profile of velocity between the values U, and U2, but allow an 
exchange of gases between the two sides. This would correspond to Xc = 0 (no 
‘velocity mixing ’). The intrusion of light gas into the low-speed side would lower 
pU below p2 U2 while the intrusion of heavy gas into the high-speed side would 
increase p U above p, U,. 

It is interesting to apply simple eddy-viscosity theory for this case (i.e. 
vF N b ( x ) A U ,  Sc = v r / g T )  and numerically calculate the product pU. The 
details of this calculation are given in Rebollo (1973); in figure 16 we show a 
comparison between the calculated and measured profiles of pU for various 
Schmidt numbers. The agreement in profile shape could be improved by choosing 
a suitable profile (or an intermittency factor) for vr(y)  rather than the constant 
value used, but this should not significantly alter the conclusion that the effective 
Schmidt number corresponding to  the experiment has a value between 0.2 and 
03- 

This considerable difference in the diffusivities is related to the large structurein 
the flow. Owing to the large-amplitude excursions of tho layer, helium on one side 
of the layer is convected with little mixing to the nitrogen side and vice versa. 
This motion can be thought of as imposing velocity perturbations; the require- 
ment for continuity (across a density interface) in the corresponding pressure 
perturbations means that these velocity perturbations will be much less in 
the heavy than in the light gas. Consequently, in traversing away from a low- 
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velocity dense gas on one side, there will be a considerable change in mean 
composition before the mean velocity changes significantly (see figure 12). 

8. Flow structure 
The most interesting, and probably the most important, part of this investi- 

gation concerns the coherent structures revealed by the shadowgraphs (figure 3, 
plate 2 ) .  It seems astonishing that many years of research on mixing layers, much 
of it with the help of sophisticated methods of hot-wire anemometry, had not 
drawn a picture of such clearly defined, distinctive structures. There is often no 
substitute for direct flow visualization. In  our experiments, the visualization was 
made possible by the large difference in refractive index of the two mixing 
streams. In  the experiments of Winant & Browand (1974) on mixing layers in 
water, it  was achieved with dyes injected into the initial vortex layer. 

Whether one views these structures as waves or vortices is, to some extent, 
a matter of viewpoint. On high-framing-rate motion pictures, they have the 
appearance of breaking waves or rollers progressing downstream. When followed 
by the camera (as in the Winant & Browand experiment), the vortex-like 
structure of each ‘wave’ becomes evident. The situation is reminescent of the 
late, nonlinear stages of laminar instability of a free shear layer, in which the 
infinitesimal wave grows and distorts, tending to roll up into a vortex on the 
decreasing-amplitude face of each wave. Some excellent pictures of this develop- 
ment from a laminar instability may be found in a paper by Preymuth (1966). In  
this article and the following, we examine some of the properties of these coherent 
eddies, to gain some understanding of their role in the turbulent mixing layer. 

Whereas, in the laminar instability layer, the spacing of the eddies is equal to 
the wavelength of the initial small disturbance from which they have developed, 
it is clear from all the pictures that, in the turbulent layer, the spacing increases 
with increasing distance downstream. The eddy diameter also increases. Com- 
paring a series of random pictures (e.g. figure 3, plate 2 ) ,  there does not appear to 
be a fixed repeatable pattern in the vortex arrangements; there is only a general 
resemblance in that the scale increases. Now it can be argued from general, 
similarity principles that any mean scale must increase continuously and linearly 
with x - xo, and thus it is necessary that the mean spacing i and the mean size of 
the eddies also increase smoothly and linearly with x - xo. What may not be clear 
at first is that the scales and spacings of individual eddies cannot possibly 
increase continuously. The reason is that each eddy is an identifiable entity which 
during its lifetime travels at  a constant speed near the average +(Ul+ U2). This 
convective speed is independent of size or location of the eddy. It would seem, 
then, that the frequency with which eddies pass any station x must be invariant, 
but on the other hand, the requirement of increasing spacing requires a decreasing 
frequency. The lump of vorticity that is an eddy cannot simply disappear; thus 
one is led to conclude that, as they convect downstream, eddies must amalgamate 
in some way into larger structures, and that this process must continually recur 
with increasing x. The process of amalgamation was described by Winant & 
Browand (1974) as a vortex pairing, in which, at  some stage, the tandem arrange- 
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FIGURE 17.  Trajectories of eddies. Helium at 1060crns-l, nitrogen a t  400 cms-l, pressure 
= 7 atm. ( a )  Crosses denote locations of eddies in the r, t plane. Each division on the time 
axis denotes 10 frames. Framing rate = 8000s-l. ( b )  Sequence continuing from (a) ,  but 
showing trajectories as faired lines. 
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ment of two successive vortices becomes unstable, and they rotate around each 
each other briefly and become one, the new structure then convecting down- 
stream until the next encounter. An example of such a pairing process was seen by 
Freymuth (1966) in his study of the laminar instability, and Browand (1966) 
noted the appearance of subharmonics of the primary instability frequency in a 
laminar free shear layer. At that time, the phenomenon was not associated with 
an essential mechanism in turbulent mixing, but with the transition from the 
laminar regime, as indeed it is. At this early stage, the process still remembers the 
initial, laminar disturbance. 

Although the details of the pairing are not so discernible in our shadowgraphs 
as in the pictures of Winant & Browand, the amalgamation events can easily be 
seen by plotting the trajectories of the eddies on an x, t diagram. The one case 
we have studied is shown in figure 17. A camera with high framing rate was used 
to obtain a movie sequence of shadow images, on which individual eddies could 
be followed from frame to frame, and plotted on the x, t plot. Figure 17 (a) shows 
the actual points as determined on a scanner in which the film was mounted. 
There is a certain amount of noise or scatter connected with the definition of the 
location and with measuring error. Figure 17 (b )  shows the data smoothed by eye, 
to give a better impression of the processes depicted. A plot of this kind was also 
prepared from our film strip by Damms & Kiichemann (1972). 

It will be seen that the trajectory lines are all fairly parallel to each other; over 
all the trajectories plotted the speed varies from 0.45u1 to 0.60U1 with an 
‘average’ of 0-53U1. This is significantly lower than $(Ul+ U,) = 0.69U1, but it 
should be noted that instability theory shows that there is a tendency to pull the 
wave speed toward the velocity on the high-density side ( 9  7.4). The calculation 
of the speeds is based on a knowledge of the framing rate ( ~ O O O S - ~ ) ,  which is 
known to about 5 yo. During its constant-speed lifetime, each eddy structure is 
quite identifiable, but a t  some point it can no longer be followed. On the x, t plot, 
it can be seen that at the same time an adjacent vortex is also terminating its 
separate lifetime, and it seems quite clear that this must be the vortex-pairing 
process observed by Winant & Browand. In addition to vortex pairing, triplet 
and even quadruplet events also occur, but much less frequently. 

From the movie strip we have been able to obtain a certain amount of statistical 
information, e.g. about the average spacing between successive eddies. This was 
determined from an ensemble of spacings between all identifiable pairs on 500 
successive frames of film. At a framing speed of 8000 s-l and with a vortex con- 
vective speed of 0-53U1 = 18.5 f t  s-l, this can be interpreted as a ‘ flow length ’ of 
14in., compared with the test section interval of about 4in. we used. Thus the 
sample is not very large (e.g. at x = 3in. it corresponds to the passage of only 
about 15 vortices), but, averaged over all the vortices seen, the results are 
probably accurate to 10 yo, and should be useful for obtaining an idea of some 
important features. 

Each measurement of spacing 1 was identified with a value of x midway 
between the two eddies and thus a value of l / (x  - xo) determined, using for xo the 
apparent origin determined from the profile measurements ( 3  6). The values of 
l/x were then sorted out into a histogram, shown in figure 18. The total number of 
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FIGURE 18. Distribution of eddy spacings. Conditions as in figure 17. 
Z / ( X  - x,,) = 0.31, r.m.8. deviation = 0.10. (Sample size = 3622.) 
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FIGURE 19. Lifespans of eddies. Each vertical bar denotes the distance between the point of 

creation and the point of amalgamation of an eddy. 

members of the ensemble was 3622, but this is not the number of independent 
pairs, since some pairs were tracked over many frames. We estimate the number 
of pairs invoIved to be somewhat larger than 100. The mean vaIue of the spacing 
(see figure 18) is 

I =  0.31(x-x0) for r = 1/47, s = 7, 

and this is close to the most frequent value I ,  = 0*30(x - xo). The r.m.s. dispersion 
of spacings about the mean is O.IO(x - xo). 

(8.1) 
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Although we do not have statistical information for other values of velocity 
ratio and density ratio, it is clear that the constant in the above relation will vary 
with them. It is more likely to be invariant if a thickness rather than x - xo is taken 
as the reference length. Using the vorticity thickness which, for r = 1/47  and 
s = 7 ,  is 6, = 0.107(x-xn) from figure 14, we find 

i = 2-96,. 

We shall assume that the constant is the same for the most frequent value lnL. 
Changing the density ratio by a factor of 49 does not appear to change the 
constant greatly. On the basis of a few pictures like that in figure 5 (plate 4) we 
estimate = 0.21 (x - xn) and thus, using figure 14 for 6, find = 3.56,. 

In  their experiments with water, Winant & Browand (1974) also determined 
a histogram of vortex frequencies seen a t  a trigger probe a t  a fixed value of x. 
The value of the velocity ratio r = 0-36 was almost identical with ours but for 
their experiment in water the density ratio was s = 1 compared with our value 
s = 7. Using their value of the most probable vortex frequency, and assuming 
convection at  the mean speed, gives 1, = 3.36,. 

Using hot-wire anemometry, Spencer & Jones (1971) found a peak (a broad 
spike) in the spectra of turbulent energy a t  the edges of a mixing layer in air a t  a 
velocity ratio r = 0-6. Associating this with the coherent eddies, assuming con- 
vection a t  the average velocity and taking 8, from (5.8), we calculate lm = 2-88,, 
but with 6, from their measured velocity profile I, = 3-38,. The values used in 
the latter calculation were fm = 240 s-l, U, = 1OOft s-l, x = 22 in., 6,lx = 0.036. 
Similarily, for r = 0.3 a t  the same values of U, and x, their experiments indicate a 
spectral peak a t  105 s-l. With this, 1,/6, = 3.3 or 3.8, depending on whether we 
use (5.8) or their value for S,/(X - xo). For these same conditions ( r  = 0.3), Jones 
et al. (1973) inferred the most probable spacing directly from space-time corre- 
lations, and found 1, = 0 . 2 8 8 ~ .  With values of &,from (5.8) or from their measure- 
ments, this converts to I ,  = 3.86, or 5.16,, respectively. (Using a different 
definition for thickness, namely the distance b between the two points in the 
profile where the velocity is within 5 yo of U, and U, respectively Jones et al. 
suggest 1, = 3b as the universal relation.) 

Turbulent energy spectra obtained by Kolpin (1964) in the mixing layer a t  the 
edge of a round jet showed a maximum whose frequency decreased linearly 
downstream. This was not so much a separate peak as a maximum a t  the low- 
frequency end of the spectrum, and Kolpin did not associate it with a coherent 
vortex structure. At this maximum, f,x/U, = 0-55. If, for this case a t  U, = 0, we 
use U = +Ul and 6, = 0-163x, then 1, = 5-66,,. Correspondingly, 1, = 0.92x, 
a rather large spacing. The few pictures which we have for U, 0 (e.g. figure 6, 
plate 5) do not suggest that the spacing of the large eddies is as large as this, and 
we believe that there is still a spectral ‘peak ’ to be found for U, = 0 a t  about twice 
the frequency of Kolpin’s maximum, possibly by looking for it in the irrotational 
fluctuations near the edge of the mixing layer, as did Spencer & Jones. It is 
interesting that peaks in the spectra, of v7 and wTobserved by Wygnanski & 
Fiedler (1970) in their study of a mixing layer with U, = 0 agree well with 
estimates using our correlations. 

- 
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While it would be desirable to have more results, over a wide range of values of 
velocity and density ratio, especially for U, = 0, the above examples give some 
reason to believe that the mean eddy spacing in the mixing layer depends only 
on the mean thickness, not directly on velocity ratio or density ratio. For the 
present, we shall take it to be 

(8.2) = 3sw,. 

Another quantity of interest is the lifespan of the coherent structure. To obtain 
some statistical information on this, 44 different eddies with lifespans in the 
interval between 0.5 and 2-5 in. downstream of the splitter plate were followed. 
Denoting by L the distance from the point of creation of an eddy to the point of 
amalgamation with another one and taking its position x as the midpoint of that 
distance, the distribution of values of L / ( x  - xo) was obtained. The mean value 
from this was 

and the dispersion in L / ( x  - xo) was 0.22; one of the lifespans in this sample was 
as large as 0*94(x - xo), while seven were in the lowest interval, 0.1 to 0.2(x - xo). 
In terms of vorticity thickness, E = 4.36,; but whether this is universal for other 
velocity and density ratios is not clear. 

It seems remarkable, a t  first, that a flow with such ‘organized’ structure, 
similar to the instability structure in a laminar shear layer, could have the 
attributes usually associated with a turbulent flow: ‘randomness ’, broad energy 
spectrum, etc. The usual reaction to pictures such as those displayed here is often 
expressed by the question, ‘Yes, but what happens when the flow is turbulent 
(at high Reynolds number) ? ’ That the flow is turbulent is indicated by the mean 
velocity and density profiles, which have the expected properties and agree well 
with measurements of other investigators. Also, measurements of mean 
fluctuating density (Rebollo 1973) show the expected self-preserving behaviour. 
Furthermore, shadowgraphs such as those in figure 20 (plate 7) show that the 
large eddy structure is not changed by changes in Reynolds number. Increasing 
the Reynolds number by a factor of 4 produces more small-scale structures with- 
out basically altering the large-scale. This is quite in agreement with well known 
views of free turbulent structure. (The enhancement of the small scales may be 
partially an optical enhancement with increasing pressure, but not entirely, 
as may be seen by comparing pictures for different Reynolds number a t  the 
same pressure.) 

In  concluding § 8, we speculate briefly on what mechanisms are at  work to give 
the flow its turbulent attributes, maintaining the point of view that the coherent 
structures described above play a central role. 

One mechanism, of course, is the well-known ‘cascade to higher wavenumbers’, 
which fills out the high-wavenumber end of the spectrum of eddy sizes. We 
visualize this mechanism as connected with ‘internal instabilities ’ (i.e. internal 
to the large eddy), rather than breakdown of the eddy into smaller ‘pieces ’ (quite 
the opposite process is at work). The sort of thing we have in mind is illustrated 
in some pictures obtained by Pierce (1961) of small-scale instabilities on vortex 
layers which have rolled up into a large structure. Three-dimensional vortex 
stretching effects would also fall into this category of internal instabilities. 

= 0.39(x-x,) for r = 1 4 7 ,  s = 7, 
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Of more interest, however, is the energy containing, low-wavenumber end of 
the spectrum. We have already seen that the scales associated with the coherent 
structures are quite broadly dispersed about a mean value. The measurements 
of Spencer & Jones (1971) show that there is a corresponding broad peak in the 
velocity-fluctuation energy spectrum. But the measurements also show large 
energy content a t  much lower wavenumbers. To what are those large scales 
related? We believe that they are associated with what might be called ‘external 
instabilities ’ of the basic, coherent structures (i.e. instabilities in the arrangement 
of the structures along the mixing layer). The principal instability appears to be 
the pairing process described by Winant & Browand (and occasional multiple 
amalgamations). Each such process produces locally a dislocation in the vortex 
train. Furthermore, these processes occur at various points up and down the train. 
The distances between such events, say, or the times between them at a given 
location, define scales at  wavenumbers lower than those connected with the 
mean spacing of the coherent structures. 

In  contemplating how one might model the behaviour of such an array of 
convecting, coherent structures, whose individual scales can increase only by 
discrete jumps but which on average will produce the smooth, linearly growing 
mixing layer required by global considerations (the Reynolds equations), it 
becomes apparent that there must be irregularity or ‘jitter’ in the occurrence of 
the discrete events. Since there is a continuity of (mean) scale along the layer, 
every discrete scale of the coherent structures must participate in an amalgama- 
tion event at some time or other. The mechanism for ensuring this must be 
interactions between the large structures up and down the layer. It seems likely 
that jitter would result from the amalgamation events, from the corresponding 
dislocations created at  various points along the train and the necessary adjust- 
ment of the surviving vortices to such situations. All this would be instrumental 
in producing dispersion. 

The notions we have tried to express here are still vague. A better under- 
standing of the interactions of the large structures would, we believe, be helpful 
in formulating more physical models of turbulent shear flow than those based on 
the Reynolds equations. 

In  all the above, it has been implied that the coherent eddies and their inter- 
actions are basically two-dimensional. That velocity fluctuations in the spanwise 
direction contain energy, even a t  low wavenumbers, is clear from the hot-wire 
measurements of many investigators. The tendency toward isotropy in the small 
scales is well known ; a description of the tendency toward three-dimensionality, 
though not necessarily toward isotropy, in the large scales is needed. Nevertheless, 
we believe that many of the interesting features of a plane mixing layer are 
described by viewing the coherent eddies as nearly two-dimensional rollers. 
Spanwise coherence over a few diameters should be sufficient for this. In  the 
following article some further development of this view is used to obtain an 
estimate of entrainment rate. 
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9. Entrainment and mixing 
The use of dissimilar gases on the two sides ((i) and (ii)) of the mixing layer made 

it possible to make some observations of the processes of mixing that are not 
revealed when the flow is homogeneous in its physical properties. 

From the shadowgraphs it can be seen that the fluid on one side of the mixing 
layer makes deep incursions into the other side. This is confirmed by the plot of 
densities sampled by the aspirating probe as it traversed the mixing region 
(figure 11 ( b ) ) ,  which shows fluctuations of density almost equal to the density 
difference. Considering that the probe response is not perfect, it  may be con- 
cluded that pure gas from each side penetrates to the centre of the mixing layer 
and even deeper. It is clear then that the mean density or concentration profile 
tells little about the degree of intimate, molecular mixing at various points of 
the profile. There must be rather little mixing in this sense. In  fact, in turbulent 
mixing between two ideal fluids with zero diffusivities there would be no mixing 
in the molecular sense. The two fluids would remain permanently separated by 
the interface, which would, however, be highly convoluted owing to the instabili- 
ties that drive the turbulent process. Thus, even though not inter-diffused, the 
two fluids would be intricately entangled. If we now ‘turn on’ the diffusivity 
and viscosity (which are small a t  high Reynolds numbers), the effect will 
be to smear out the interface and the smallest convolutions (eddies), but not 
to affect the large structures that determine the basic mean properties of the 
flow. 

Closely related to this process of turbulent mixing is the phenomena of entrain- 
ment, i.e. the rate of ingestion of non-turbulent fluid into the turbulent region. 
One view of the entrainment process sees it as the propagation of the ‘turbulent 
interface ’ into the non-turbulent fluid. (This is not the two-fluid interface to 
which we alluded above, but the ‘edge’ of the turbulent region.) While this 
description may have its uses, it tends to be misleading, implying a process of 
‘nibbling’ (at the edges) rather than one of ‘gulping’ or enfolding, which flow 
visualization shows. The process of entrainment might better be called ‘entangle- 
ment’. The entanglement appears to occur primarily in the formation of the large 
coherent eddies. The smaller instabilities embedded in the large structure add 
nothing to the basic ingestion of fluid, but only to its ‘digestion’. Thus each 
eddy contains and is transporting fluid from both sides of the layer which has 
been entangled into it in earlier stages (mainly amalgamation events) of its for- 
mation. With this view, we can make an estimate of the rate of entanglement, by 
assuming that the entangled fluid is contained wholly within the coherent 
eddies, and making use of the statistical properties we have discussed in 
previous sections. 

Assuming each eddy to be a cylindrical structure with diameter equal to &iZ 
( 9  4)) the volume of fluid (from both sides) entangled into such a vortex, per unit 
span, is $ 7 ~ & $ ~ .  If the average frequency with which vortices pass a given 
station x is denoted by f ( x ) ,  then the average entangled flow rate is $d$, f .  We 
shall replacefby L$, where &is the convection speed, and iis the average spacing. 
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(Strictly speaking,f = (VZ) + (l/l).) Thus we write for the flow rate of entangled 
fluid 

Using (8.2) for i, (5.2) for 8, and (4.1) for Svtz, and taking V, to be the average 
velocity +( 1 + r )  U,, leads to 

Q, = @qiZ qli. 

This formula accounts for all the entangled fluid, and does not distinguish 
between the twosides (i) and (ii). The rates of entanglement of fluid fromeach side 
many be written as a, Q, and a2 Q,, respectively, with a, + a2 = 1. For the present, 
we shall assume a, = a2 = 4. Thus the flow rate from either side of fluid that has 
become entangled in the mixing layer is one half that in (9.1). 

A test of this result may be made by considering the case U2 = 0 (i.e. r = 0). In  
this case, all the fluid from side (ii) that becomes entangled is also the fluid that is 
entrained, in the usual terminology. It is known that the entrainment rate must 
be supplied by an inflow from region (ii), and demands a velocity 

V( -a) = 0.035U1, 

the constant here having been evaluated from the experimental results of 
Liepmann & Laufer (1947). From the model outlined above, the result for r = 0 is 

dQ,,/dx = 0*052U1. 

While the agreement is not impressive, it  seems close enough, in view of the 
various assumptions in the model, to suggest that the underlying ideas may be 
correct. For values of the density ratio p2/p1 = 7 and 3, the constant in (9.2) 
changes to 0.070 and 0438, respectively. 

10. Concluding remarks 
An initial objective of this work was to determine the effects of density ratio on 

turbulent mixing in incompressible flow. The amount of data is not as much as we 
should have liked: only three data points in figure 14, and a few more in figure 7. 
While this makes possible some general conclusions and comparisons with com- 
pressibility effects (as in figure 15), it  is not enough data for a good determination 
of the density dependence C(s) in (2.5). As we have seen, there is still some 
uncertainty even about the dependence on velocity ratio C(r )  (figure lo), even 
though much more data are available. Although it is already clear that the effects 
are relatively small (compared with those of compressibility), a more compre- 
hensive determination of C(s) would be useful, and it is our intention to obtain 
some additional measurements for it. An interesting problem is to understand 
how a density difference affects the large, coherent structures which control the 
mixing layer development. For homogeneous flow, the problem may be con- 
sidered to be one of vortex kinematics (and has been set up as such in some 
computer studies). There seems to be no simple way to retain this point of view 
when there is a difference in densities, although the pictures show that the 
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structure is still basically the same as for the homogeneous case. In  the problem 
of Helmholtz instability of a vortex sheet the effect of density ratio on amplifica- 
tion rate is to effectively increase the vortex strength by (p2/p1)*; our attempts to 
find simple extensions of such ideas to the turbulent mixing layer have not been 
very successful. 

On the important problem of the properties and role of the large coherent 
structures, there is much still to  be done. The recent work of Winant & Browand 
describes the crucial process of amalgamation of the structures and its relation 
to the growth of the layer. More understanding of the larger-scale interactions 
resulting from those events, and their relation to the ‘turbulent ’ character of the 
flow, is needed. More understanding of the details of the entrainment process, 
what we have called entanglement, is also needed. 

Obviously, the existence of these structures suggests possibilities for models of 
turbulent shear flows that go beyond the Reynolds-equation modelling of most 
present methods. Some steps in this direction have been taken by Winant & 
Browand (1974) and Moore & Saffman (1974, private communication). 

We are indebted to colleagues and students a t  the Graduate Aeronautical 
Laboratories (GALCIT) for many helpful discussions, suggestions and ideas, as 
well as assistance with various aspects of the experiments. Some of the shadow 
pictures are from Rebollo (1973). A short account of this work (Brown & Roshko 
1971) was given a t  the AGARD Conference on Turbulent Shear Flows. The work 
was made possible by the generous support of the Office of Naval Research under 
contract NO001 4-67-A-0094-0001. 

REFERENCES 

ABRAMOVICH, G. N. 1963 The Theory of Turbulent Jets. M.I.T. Press. 
ABRAMOVICH, G. N., YAKOVLEVSKP, 0. V., SMIRNOVA, I. P., SECUNDOV, A. N. & 

KRASHENINNIKOV, S. Yu. 1969 An investigation of the turbulent jets of different 
gases in a general stream. Astronautica Acta, 14, 229. 

1972 A critical review of the experimental data for 
developed turbulent free shear layers. Free Turbulent Shear Plows, N A S A  SP-321, 

BRADSHAW, P. 1966 The effects of initial conditions on the development of a free shear 
layer. J .  Fluid Mech. 26, 225. 

BROWAND, F. K. 1966 An experimental investigation of the instability of an incom- 
pressible, separated shear layer. J .  Pluid Mech. 26, 281. 

BROWN, G. L. & REBOLLO, M. R. 1972 A small, fast-response probe to measure com- 
position of a binary gas mixture. A.I.A.A. J .  10, 649. 

BROWN, G. L. & ROSHKO, A. 1971 The effect of density difference on the turbulent 
mixing layer. Turbulent Shear Flows, AGARD-CP-93, 23-1. 

DAMMS, S. M. & KUCHE;MANN, D. 1972 Possible vortex motions in shear layers. R o y .  
Aircraft Establishment Tech. Memo. Aero. no. 1430. 

FREYMUTH, P. 1966 On transition in a separated laminar boundary layer. J .  FZuid Mech. 
25, 683. 

HIRSCHFELDER, J. O., CURTISS, C. F. & BIRD, R. B. 1954 Molecular Theory of Gases and 
Liquids. Wiley. 

BIRCH, S.F. & ECGERS, J . M .  

p. 11. 



816 G .  L. Brown and A .  Roshko 

IKAWA, H. 1973 Turbulent mixing layer in supersonic flow. Ph.D. thesis, California 
Institute of Technology. 

JONES, B. G., PLANCHON, H. P. & HAMMERSLEY, R. J. 1973 Turbulent space-time corre- 
lation measurements in a plane two-stream mixinglayer a t  velocityratio 0.3. A .I.A .A. 
Paper, no. 73-225. 

KOLPIN, M. A. 1964 The flow in the mixing region of a jet. J .  Fluid Mech. 18, 529. 
KORST, H. H., PAGE, R. H. & CHILDS, M. E. 1955 A theory for base pressures in transonic 

and supersonic flow. University of Illinois Ens. Expt. Station Rep. ME-TN-392-2. 
LIEPMANN, H. W. & LAUFER, J. 1947 Investigation of free turbulent mixing. N.A.C.A. 

Tech. Note, no. 1257. 
MAYDEW, R. C. & REED, J. F. 1963 Turbulent mixing of compressible free jets. A.I.A.A. 

J .  1, 1443. 
MILES, J. B. & SHIH, J. 1968 Similarity parameter for two-stream turbulent jet-mixing 

region. A.I.A.A. J .  6 ,  1429. 
MILLS, R. D. 1968 Numerical and experimental investigations of the shear layer between 

two parallel streams. J .  Fluid Mech. 33, 591. 
PATEL, R. P. 1973 An experimental study of a plane mixing layer. A.I.A.A. J .  11, 67. 
PIERCE, D. 1961 Photographic evidence of the formation and growth of vorticity behind 

plates accelerated from rest in still air. J .  Fluid Mech. 11, 460. 
PUI, N. K. 1969 The plane mixing layer between parallel streams. M.A. Sc. thesis. 

University of British Columbia. 
REBOLLO, M. 1973 Analytical and experimental investigation of a turbulent mixing layer 

of different gases in a pressure gradient. Ph.D. thesis, California Institute of Technology. 
SABIN, C. M. 1965 An analytical and experimental study of the plane, incompressible, 

turbulent free-shear layer with arbitrary velocity ratio and pressure gradient. Trans. 
A.S.M.E. D 87, 421. 

SCHLICHTING, H. 1960 Boundary Layer Theory, 4th ed. McGraw-Hill. 
SIRIEIX, M. & SOLIONAC, J.-L. 1966 Contributions a 1’6tude experimentale de la couche de 

melange turbulent isobare d‘un Bcoulement supersonique. Symposium on Separated 
Plow, AGARD Conf. Proc. p. 4. 

SPENCER, B. W. & JONES, B. G. 1971 Statistical investigation of pressure and velocity 
fields in the turbulent two-stream mixing layer. A.I.A.A. Paper, no. 71-613. 

SUNYACH, M. 197 1 Contribution a 1’6tude des frontieres d’6coulements turbulents libres. 
D.Sc. thesis, L’Universit6 Claude Bernard de Lyon. 

TOWNSEND, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University 
Press. 

WINANT, C. D. & BROWAND, F. K. 1974 Vortex pairing: the mechanism of turbulent 
mixing-layer growth at  moderate Reynolds numbers. J .  Pluid Mech. 63, 237. 

WYGNANSKI, I. & FIEDLER, H. E. 1970 The two-dimensional mixing region. J .  Pluid 
Mech. 41, 327. 

YULE, A. J. 1972 Two-dimensional self-preserving turbulent mixing layers at different 
free stream velocity ratios. Aero. Res. Counc. R. & M. no. 3683. 



.Journal of Fluid Mechanics, Vol. 64, part 4 Plate 1 

PrGultE 2. Mixing layer apparatus. The wedge-shaped splittcr plate sc:pitratcs tlic: two Ilttlf- 
nozzles. A probe is mounted i n  tlio test section from a Iiorizorital tritvtmt:. Tllc: prossurc 
cylinder in the upper part of t,lie photo can bc pulled dowlr over tho seal on the circular plstc: 
i n  the lower part. 

BROWN AND RORHKO (Facing p. 816) 
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FIGURE 3. Shadowgraphs of mixing Iaycr t,alteti at random times. Liiies show rrlrthod of 
determining 8tlz. Channel wid th  at lcft side of picture is 6 mi. 
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FIGURE 4. Shadowgraph of mixing layer in flow between nitrogen (upper) 
at 326 em s-l arid air at 123 cm s-l. Pressure = 7 atm. 

Plate 3 
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FILWRE 6 .  N~adowgraplis of mixing layer betwecri nitrogeii (upper) at 876 ern s-l and helium 
at 330cm s-1. Pressure = 4 ntm. ( ( 1 )  Single spark exposure. ( b )  Ten superimposed rxposures. 
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FIGURE 6. SEit~dowgraphs of mixing 1ayt.rs with vclocity ratio Uz/Ul = 3. ( a )  Helium (uppc'r) 
at 7J1 = 915crns-l, nitrogen at  l/, = 130c1ns prossurc = 7atm. ( b )  Nitrogcri (upp~r)  at 
945crns-', air a t  140cin s I ,  pressure = 9 at,rii. ( c )  Nitrogen (upper) at 920 ems-', Iieliurn 
a t  140 ern s-l, pressiircx = 5 atm. 
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FIGURE 8. Spanwisc: correlations of largc striicturrs. ( ( 1 )  Two cxamplcs of signals from hot 
wircs located 2 in. apart spariwise at x = 2 in., y/(z - so) = - 0.09, conditions of figure 13 ( b ) .  
( b )  Shadowgraph view normal to plane of mixing layrr between helium at 1000 crn s-l arid 
nitrogen a t  3XOcrris-', p = 7atrn. 
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FIGURE 20. Kffects of Reynolds number. Mixing layers bet>\vceri helium (upper) and nit'rogen 
(lower.) with p2 Ui  = p1 U : .  (a )  Reynolds number is proportional to 8 x 10 (pressure = 8 atm, 
U, = 10Ins-'); ( b )  8 x 5; (c) 4 x 10; (d )  4 x 5 ;  ( e )  2 x 10. 
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